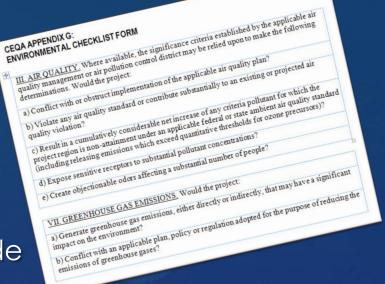
Project Level Assessment using CEQA

A&WMA Mother Lode Chapter November 6, 2013

- Public Resources Code § 21000 et. seq. requires an agency to consider the potential environmental impacts of a "project" and reduce, avoid or mitigate the impacts prior to approval
- Health & Safety Code § 40961 requires the SMAQMD to represent the citizens of Sacramento in influencing decisions of agencies whose actions may adversely impact air quality

CEQA & Authorities

- Identify projects that may impact AQ and Climate Change
- & Attainment
- & Reduce VMT, emissions & exposure
- k Improve health
- & Encourage AQ friendly development
- & Inform decision makers


Assessment

- & Coordination & consultation
- & County/City General Plans
- & CEQA Guidelines Appendix G
- & SMAQMD Principles & CEQA Guide

 - മ Thresholds
 - g Near roadways
 - g Mitigation plans

What Guides the Process

- Estimate pollutants (NO_X, ROG, GHG, PM)
- & Determine if project emissions significant
 - g Screening methods & thresholds

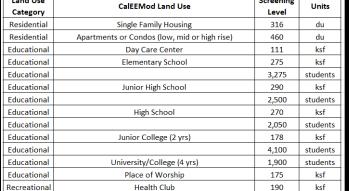
 - g Rules
- & Mitigation plans document reductions
 - ø Alternative modes
 - 8 TMA
 - **&** Infrastructure
 - g Building & site design
 - g Energy efficiency

Significance & Mitigation

SMAQMD Thresholds of Significance Table

	Operational									
Mass Emission Thresholds (dealing with Ozone precursors)										
NO _X	85 pounds/day	65 pounds/day								
ROG	NONE	65 pounds/day								
Concentration Thresholds (based on the California Ambient Air Quality Standard, identical threshold for both phases of development)										
PM ₁₀	50 μg/m³ 24-hour standard; 20 μg/m³ Annual Arithmetic Mean									
PM _{2.5}	12 µg/m³ Annual Arithmetic Mean									
co	20 ppm 1-hour standard; 9 ppm 8-hour standard									
NO₂	0.18 ppm 1-hour standard; 0.03 ppm Annual Arithmetic Mean									
SO₂	0.25 ppm 1-hour standard; 0.04 ppm 24-hour standard									
Lead	1.5 µg/m³ 30-day average									
Visibility Reducing Particles	Extinction coefficient of 0.23 per kilometer - visibility of ten miles or r	more due to particles when relative hu								
Sulfates	25 µg/m³ 24-hour standard									
H₂S	42 µg/m³ or 0.03 ppm 1-hour standard									
Vinyl Chloride	26 µg/m³ or 0.01 ppm 24-hour standard									

Notes:


The SMAQMD Board of Directors adopted the air quality thresholds of significance on March 28, 2002, via resolution AQMD2002018. A project is considered significant if emissions exceed a CAAQS or contribute substantially to an existing or projected violation of a CAAQS. A substantial contribution is considered an emission that is equal to or greater than 5% of a CAAQS. Revisions to the CAAQS are automatically adopted as revisions to these thresholds. Official citation for the CAAQS: California Code of Regulations, Title 17, Section 70200, Table of Standards.

> Table 1: 2011 Diesel PM Cancer Risk (Potential Incremental Cancer Chances p North and South of an East-West Roadway

PROJECTS NORTH AND SOUTH OF AN EAST-WEST ROADWAY Vers EMFAC2007 (Analysis Year 2011)

	Peak Hour Traffic (vehicle/hr)	recorptor Distance from Eage of Realest					1101	Recreational		
l		10	25	50	100	200	30	Recreational		
	Incren	nental Can	cer Risk Pe	r Million:	North (do	ownwind)				
	4000	188	165	137	102	67	51	41	35	
	8000	372	331	273	204	134	99	83	67	
	12000	550	487	404	299	197	149	121	102	
	16000	760	671	557	410	270	204	165	137	
	20000	951	840	696	515	337	254	207	172	
	24000	1138	1008	836	617	404	305	248	207	
Incremental Cancer Risk Per Million: South (upwind)										
	4000	102	86	67	48	32	22	19	16	
	8000	207	172	137	99	64	48	38	32	
	12000	305	254	200	143	92	70	54	48	
	16000	423	353	277	200	127	95	76	64	
	20000	531	442	347	248	159	121	95	80	
ı	24000	636	531	417	299	191	143	114	95	

Receptor Distance from Edge of Nearest Trave

Quality Restaurant

High Turnover Restaurant (sit down)

Fast Food Restaurant with Drive Thru

Hotel

SMAQMD Operational Screening Levels

Screening

93

58

15

520

ksf

ksf

ksf

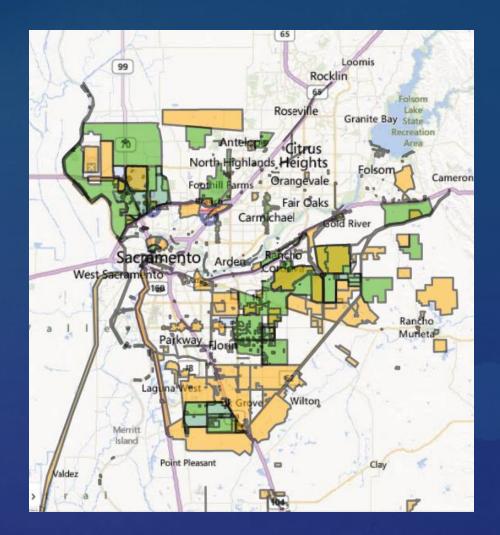
rooms

hase

Land Use

Recreational

Recreational



- © Consultation results in projects being designed better and reducing emissions that impact AQ and Climate Change
 - в Opportunities for walking, biking, transit
 - g Energy efficiency
- & Location and project design important
- SMAQMD technical assistance valuable to lead agency and proponents
- & Informed decision makers

Meaningful Results

- & SMUD ECOC
- & Township 9
- & Curtis Park Village
- & Sunrise Mall
- & Capital Village

Project Examples

- CAPCOA developed
 CalEEMod for analyzing land
 development project emissions
- SMAQMD provides the RCEM for linear projects, construction
- Risk screening tables in Roadway Protocol

Modeling Tools

Contact Info

Karen Huss **SMAQMD** 916-874-4881

khuss@airquality.org

Websites

CalEEMod www.caleemod.com

SMAQMD Tools www.airquality.org/ceqa

AEP – CEQA http://califaep.org/

For more information...

